Ad Close Mitigation for Improved User Experience in Native Advertisements
Verizon Media native advertising (also known as Yahoo Gemini native) serves billions of ad impressions daily, reaching several hundreds of millions USD in revenue yearly. Although we strive to provide the best experience for our users, there will always be some users that dislike our ads in certain cases. To address these situations Gemini native platform provides an ad close mechanism that enables users to close ads that they dislike and also to provide a reasoning for their action. Surprisingly, users do care about their ad experience and their engagement with the ad close mechanism is quite significant. While the ad close rate (ACR) is lower than the click through rate (CTR), they are of the same order of magnitude, especially on Yahoo mail properties. Since ad close events indicate bad user experience caused mostly by poor ad quality, we would like to exploit the ad close signals to improve user experience and reduce the number of ad close events while maintaining a predefined total revenue loss. In this work we present our ad close mitigation (ACM) solution that penalizes ads with high closing likelihood, in our auctions. In particular, we use the ad close signal and other available features to predict the probability of an ad close event, and calculate the expected loss due to such event for using the true expected revenue in the auction. We show that this approach fundamentally changes the generalized second price (GSP) auction and provides incentive for advertisers to improve their ads' quality. Our solution was tested in both offline and large scale online settings, serving real Gemini native traffic. Results of the online experiment show that we are able to reduce the number of ad close events by more than 20%, while decreasing the revenue in less than 0.4%. In addition, we present a large scale analysis of the ad close signal that supports various design decisions and sheds light on ways the ad close mechanism affects different crowds.